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Abstract

In this paper, we present a visual control approach consisting in a switching control
scheme based on the epipolar geometry. The method facilitates a classical teach-by-showing
approach where a reference image is used to control the robot to the desired pose (position
and orientation). As a result of our proposal a mobile robot carries out a smooth trajec-
tory towards the target and the epipolar geometry model is used through the whole motion.
The control scheme developed considers the motion constraints of the mobile platform in
a framework based on the epipolar geometry that does not rely on artificial markers or spe-
cific models of the environment. The proposed method is designed in order to cope with
the degenerate estimation case of the epipolar geometry with short baseline. Experimental
evaluation has been performed in realistic indoor and outdoor settings.
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1 Introduction

It is generally accepted that machine vision is the most promising sensory modality
in the context of navigation. Visual servoing is an important building block of mo-
bile manipulation systems as it provides rich information on the environment [9]. A
significant amount of work has been reported in the area of visual servoing during
the last decade, [5, 7, 11, 16–18, 21]. However, many of the above references con-
centrate mainly on problems inherent to image, position and hybrid visual servoing
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assuming that there are no constraints on the robot motion itself. Most commer-
cial platforms available today are nonholonomic and most of the above approaches
cannot be used for their motion control.

The basic idea of teach-by-showing visual servoing is to control a robot to a de-
sired reference position by regulation an error term to zero. which is estimated by
matching image features between current and target images. A pioneering example
of this approach is presented in [1]. There, the control is performed by recovering
the relative pose of the robot between the current and desired images. The method
is based on the computation of the essential matrix, assuming that the internal pa-
rameters of the camera are precisely known. In [3], a framework is proposed based
in a visual route consisting of a sequence of key images of the environment where
the control scheme is based on the homography of the ceiling. In [15], the navi-
gation task is considered as tracking an arbitrarily shaped ground curve and they
present a stabilizing control law for tracking analytic curves.

In [19], a visual servoing method dealing with the motion constraints of a mobile
robot is presented. The controller is based on the epipolar geometry and consists in
an input-output feedback linearizing control law. However, the motion performed
drives the robot from and not to the target, i.e. just moving away while the lat-
eral error is corrected. After that, the robot moves backwards in a straight line
towards the target with a different controller based on correlation. In the present
work the motion is performed directly towards the target, but instead of following a
straight path like in [13] the robot is driven in a smooth trajectory in order to reach
the target with the desired orientation. Moving backwards may be not practical
in visual-based robot navigation where the only sensor is a camera pointing for-
ward. Therefore we constrained the design of the controller with forward motion;
so, backward manoeuvres are not allowed, resulting in a direct motion towards the
target. This implies that the robot motion is restricted by the camera field of view.
Therefore, it is assumed that distance in depth from the initial position to the target
is greater than the side distance from the initial position to the target, avoiding the
need of high rotations to reach the target.

The estimation of the epipolar geometry becomes ill-conditioned when the robot
is close to the target and short baseline image pairs are considered. Working with
homographies eliminates this problem. Fang et al. [6] proposed the asymptotic reg-
ulation of the position and orientation of a mobile robot by exploiting homography-
based visual servo control strategies. The approach presented in [2] consists in a
system for car platooning, using visual tracking by estimating the homography be-
tween a selected reference template attached to the leading vehicle. Here, we pro-
pose an auxiliary procedure to avoid the degeneracies due to short baseline when
using the epipolar based control and we define an auxiliary fundamental matrix
with another image taken during the motion. Then, the navigation is performed
using a control based on the epipoles during the whole motion.

2



Our method consists in a switching control law based on the epipolar geometry
estimation where only one image taken at the target position is given as previous
information. The proposed approach is suited for a mobile platform and does not re-
quire complete camera calibration or any specific knowledge of the scene geometry.
The use of uncalibrated cameras has many advantages as previously discussed [9].
Methods that do not require any special modelling of the environment, and those
that do not consider the use of fiducial markers, are of significant importance in
practise. The experimental evaluation, performed in realistic settings, shows the
effectiveness of our method.

This paper is organized as follows. In Section 2, we present the estimation of the
epipolar geometry based on scale invariant image features. Perceptual and motion
models are described in Section 3, followed by the design of the control law in
Section 4. Experimental evaluation and conclusions are given in Section 5 and 6
respectively.

2 From Images to Epipoles

The visual information used in our approach is obtained from image pairs (cur-
rent and target image). In this section, we shortly describe the computation of the
epipolar geometry and the visual features used in the process.

In a recent study, Mikolajczyk and Schmid [20] analyzed a large number of interest
point descriptors and their behaviors under changes, such as scale and illumination
variation. The descriptor that turned out to be most robust in this study was the
Scale Invariant Feature Transform - SIFT, which was proposed in [14]. It was also
concluded that the point detector used was less significant. In the current imple-
mentation, we use SIFT features as originally proposed, and refer to [14] for all
details. As it can be seen in Fig. 1, the descriptor corresponds to highly distinctive
image locations and is robustly invariant to image plane transformations such as
translation, rotation and scaling. Matching between images is performed using a
simple squared distance measure between descriptors.

Once matches are available, the position of the epipoles can be estimated. We first
start by estimating the fundamental matrix using the robust approach proposed by
Torr [24] called MAximum a Posteriori SAmple Consensus (MAPSAC) which is
based on a well-known 7-point algorithm [8]. Similar to RANSAC, the method pro-
ceeds by repeatedly generating hypothesis from a minimal seven point correspon-
dences and minimizing an error term for a predefined set of point combinations.
Fig. 1 shows the estimated epipoles and some corresponding epipolar lines for one
of the current-target image pairs. Matching scale and rotation invariant features
allows us successful control under significant viewpoint changes.
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Fig. 1. Indoor and outdoor examples of matching between a current image (top) and a target
image (bottom). 25 and 74 matches have been found respectively. After MAPSAC, 21 and
62 matches remain to estimate the epipoles; three epipolar lines are drawn as example in
each case.

3 Perceptual and Motion Models

In this section we present the mobile robot system and define the expressions that
relate the epipoles with the state of the robot. Let us suppose that the state of the
robot is given by its position and orientation coordinatesx = (x,z,φ)T . The coor-
dinate frame is defined in the target position as depicted in Fig. 2. From the per-
spective projection of Fig. 2, thex-coordinates of the epipole in the current image
(ecx) and in the target image (etx) can be expressed as a function of the state of the
robot [13,19] (See Appendix A for detailed derivation of these expressions)

ecx = αx
xcosφ+zsinφ
zcosφ−xsinφ

, (1)

etx = αx
x
z

. (2)

The parameterαx is the focal length of the camera in pixel dimensions. We have
that αx = f mx, where f is the focal length in distance units andmx is pixel per
distance unit. In practise, we assume that the principal point is in the center of the
image and there is no skew. The origin of the coordinate system is fixed on the
center of the image. In Section 5 we analyze the robustness of the controller to
changes on these assumptions.

Let us also suppose that the nonholonomic differential kinematics to be expressed
in a general way as





ẋ = f (x,u)

y = h(x)
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Fig. 2. Geometric relations forecx (left) andetx (right).Cc andCt are the current and target
camera positions respectively.

whereu = (v,ω)T denotes the input vector, which includes the translational (v)
and rotational (ω) velocities, andy = (ecx,etx)T the output vector. The particular
nonholonomic differential kinematics of the robot expressed in state space form as
a function of the translation and rotation velocities of the robot (v,ω) is as follows




ẋ

ż

φ̇


 =




−sinφ

cosφ

0


v +




0

0

1


ω ,

y = (ecx etx)
T .

(3)

Also we can express thex andz coordinates as a function of the polar coordinates
d andψ (Fig. 2) as

x =−dsinψ , z= dcosψ , (4)

with ψ =−arctan(etx/αx) andφ = ψ+arctan(ecx/αx) .

4 Control Law

A common way to face the problem of controlling nonlinear systems is through
linearization [10,23]. The objective is to perform the navigation by using a feedback
control law where the inputs are the coordinates of the epipoles. Then the visual
servoing problem is transformed in a tracking problem in a nonlinear system where
the reference trajectories of the epipoles are defined.
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4.1 Input-output Linearization

As the system is nonlinear, an input-output linearization is made first to design
the controller. This input-output linearization [10, 23] is carried out as originally
presented in [19] by differentiating the system outputs until the inputs appear ex-
plicitly, and then solving for the control inputs. So, for the epipole in the current
image according to (1), and using (3) and (4) after the differentiation, we have

ėcx =−αxsin(φ−ψ)
dcos2(φ−ψ)

v+
αx

cos2(φ−ψ)
ω . (5)

Similarly for the epipole in the target image (2), and using again (3) and (4) it
follows that

ėtx =−αxsin(φ−ψ)
dcos2ψ

v . (6)

The derivation of (5) and (6) is detailed in Appendix B. Now, we define the new
inputs in closed loopνc andνt as functions depending on the tracking error(ecx−
er

cx) and(etx−er
tx). Assuming the control objective to be the output to track the set

point (er
cx, er

tx), we can make





νc = ėr
cx−kc(ecx−er

cx)

νt = ėr
tx−kt(etx−er

tx)

kc > 0 andkt > 0 being the controller gains. The tracking error from the new inputs
results in an exponentially stable error dynamics [23].

4.2 Switching Control Scheme

Here we define a switching control law to perform the robot motion towards the
target. The motion to the target is divided in three sequential steps. The first one
is a rotation to point the robot properly to the target. The second step reduces to
zero the lateral and orientation errors of the robot to the target position. Finally, the
robot moves towards the target following a straight path. The resultant path for the
robot is shown in Fig. 3. Next, the controllers of each step are defined.
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4.2.1 Controller of step 1,t ∈ [T0,T1)

There is no constraint about the initial orientation of the robot, only that at least a
part of the scene must be shared by the initial and target images in order to find
enough matches for computing the epipolar geometry. With the first controller the
robot performs a pure rotation. The rotation could also be carried out combined with
a translation moving forward, for example in case of car-like motion constraints.
From (5) and taking into account thatv = 0 we have that

ω =
cos2(φ−ψ)

αx
νc , (7)

where the reference functioner
cx needed to computeνc is defined next. From (6) we

obtain the constrainṫetx = 0 and therefore,er
tx = constant, choosing its value as the

initial er
tx = etx(0). Then we define a smooth parabolic reference function as

er
cx = (λe+ecx(0))

(
t2

T2
1

−2
t
T1

)
+ecx(0) ,

whereT1 is the duration time of the first step andλe is a constant value which
determines the maximum rotation of the robot in this step. Ifλe = 0 the robot
would point towards the target and, in this case, the robot would follow a straight
line in the second step; a higher absolute value will produce a higher rotation. More
rotation in the first step implies that the lateral error will be corrected faster at the
next step. The definition of a proper value forer

tx requires thatλe > 0 if x < 0 or
λe < 0 if x> 0. Note thatetx(0) gives these particular signs (see Fig. 2). Besides, for
higher initial position values ofx, higher values of lambda (rotation) are required;
this matches withetx(0) because its value increases with|x|. Therefore we have
chosen the target epipole to defineλe. So, in our experiments we defineλe = etx(0).
Nevertheless, the rotation can be limited by the camera field of view; in this case,
the first step is carried out until the reference value is reached or while a minimum
set of matches is available.

4.2.2 Controller of step 2,t ∈ [T1,T3)

The robot moves towards the target while correcting the lateral and orientation error
between current and target positions. From (6), the velocity is

v =− dcos2(ψ)
αxsin(φ−ψ)

νt . (8)

The parameterd is the distance to the target, which is unknown. We fixd to a
constant value considering it as a control gain. Experiments in Section 5 show that
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the feedback control law copes correctly with this approximation.

The angular velocityω is obtained from (5) as

ω =
cos2(φ−ψ)

αx
νc +

sin(φ−ψ)
d

v ,

and using (8) with the previous expression it follows that

ω =
cos2(φ−ψ)

αx
νc− cos2(ψ)

αx
νt . (9)

The reference functions needed to computeνc andνt are defined as second order
polynomial in time as

er
tx = etx(0)

(
t2

T2
2
−2 t

T2
+1

)
,

er
cx =−λe

(
t2

T2
3
−2 t

T3
+1

)
,

whereλe has been already defined and the time duration of each reference func-
tion areT2 and T3 respectively. We require the target epipole to be regulated to
zero before the current one, soT2 < T3, in order to avoid the singularity in (8)
when sin(φ−ψ) = 0 at the end of the step. Thus, when the timeT3 is reached
both epipoles are zero and the control switches to the next step. The particular case
in which the initial position of the robot is aligned with the target, i.e.(x,z,φ) =
(0,z,0), makes the controller to switch automatically to step 3, performing properly
the motion to the target following a straight line.

4.2.3 Controller of step 3,t ∈ [T3,T5)

When the control switches to the third controller, the robot is pointing to the target
with no lateral or orientation error and only a straight forward motion is left. The
robot moves with constant velocityv3 . Here we haveνt = 0 and then, from (9)

ω =
cos2(φ−ψ)

αx
νc . (10)

The previous expression is used during this last motion to correct the orientation
error due to noise or drift, which cannot be ignored in real situations. The reference
trajectories of the epipoles are set aser

cx = 0 ander
tx = 0.

The behavior of the robot fully depends on the reference trajectories of the epipoles.
The trajectories that have been defined for the three controllers of the switching
control are summarized in Fig. 3 together with the resultant motion of the robot.
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Fig. 3. Reference trajectories of the epipoles (left) and robot motion (right).

During the last step, when the robot comes closer to the target, the epipolar geome-
try turns out to be not well defined. Therefore, an additional consideration is needed
to servo the robot in the final step. We can use the same epipolar control model pro-
posed by taking into account that, at the end of the second step, inT3 (Fig. 3), the
epipoles are zero and the robot has the same orientation as in the target position.
Then, the image taken atT3 is used as an auxiliary target to correct orientation at
the final step of the control loop. During the straight motion fromT3 to T5, two fun-
damental matrices are computed: one relating the current position with the target
(F) and the other one between the current position and the auxiliary target (Faux).
The method switches from the fundamental matrixF to Faux in order to avoid the
degeneracy ofF at the end of the motion because of the short baseline. The switch
(T4) is autonomously done when the estimated epipoles are detected to become un-
stable.The issue of detecting degenerate situations has been addressed in [24]. That
work discusses related methods and present strategies for tackling the problem of
degeneracy by using a statistical model selection test. Here we use a simpler ap-
proach consisting in checking the evolution of the estimated epipoles considering
that they become unstable if their values change suddenly over a threshold. Then,
the robot goes on moving towards the target position and it stops when the mean
squared error of the feature coordinates between the current and target image is
minimum.

Alternatively, a suitable approach with short baseline is to use a homography based
control [6,22]. This is a viable solution since, close to the target, all the environment
is seen in the plane of the infinity. We have implemented a homography-based
control for the last step of the navigation to compare with our method for short
baseline. This approach consists of a proportional controller on two elements of
the homography matrix computed between current and target image (refer to [12]
for details). The control is decoupled as only pure translation is left, having the
homographyH = hi j with (i, j) = 1,2,3, and that the desired final homography is
the identity matrix, the velocities of the robot to reach the target are given by





v = kv (1−h33)

ω =−kω h13

(11)
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Fig. 4. Diagram of the switching control law. An image in the current position is taken
at each loop of the control. The epipolar geometry that links it with the target image is
computed from the feature matching. Using the fundamental matrix, the switching control
law gives the rotation and translation velocities to carry out the motion.

kv > 0 andkω > 0 being the control gains. This controller changes the model used
during the navigation from the epipolar geometry to the homography, being one
advantage that the last step is now uncalibrated. The robot motion of the proposed
control law results in an asymptotic correction of the rotation and lateral distance
(the x-coordinate), which is critical when using mobile robots with nonholonomic
motion constraints. Using the additional homography based controller the resultant
motion is also asymptotic in the correction of depth.

The switching control law presented is summarized in algorithm 1, wherekv and
kω are positive control gains. A diagram of the switching control law is shown in
Fig. 4. When the loop finishes, the robot is in the target position, and current and
target images are the same.

Algorithm 1 Switching Control Law

1)


 v

ω


 =


 kv 0

0 kω





 0

cos2(φ−ψ)νc/αx




2)


 v

ω


 =


 kv 0

0 kω





 − dcos2(ψ)νt

αx sin(φ−ψ)
cos2(φ−ψ)νc−cos2(ψ)νt

αx




3)


 v

ω


 =


 kv 0

0 kω





 v3

cos2(φ−ψ)νc/αx




3’)


 v

ω


 =


 kv 0

0 kω





 1−h33

−h13




10



4.3 Stability Analysis

The analysis of stability for switched systems is developed in [4]. In that work it
is defined thesequence nonincreasing conditionwhich guarantees the stability of
such systems. Our particular control scheme is a deterministic sequential switching
control and therefore, if the individual controllers are stable, the global system will
be stable as well. In order to analyze the stability of the epipolar-based control law,
we define the Lyapunov candidate function expressing the robot position in the
coordinate system(x(t), z(t), φ(t)), as

V = Vx +Vz+Vφ =
(x−xr)2

2
+

(z−zr)2

2
+

(φ−φr)2

2
, (12)

where (xr , zr , φr ) is the desired position at the end of each step. We have thatV is
positive if the reference state of the system corresponding to the desired position for
every step has not been reached. OtherwiseV = 0 and the corresponding reference
state has been reached. ThereforeV is positive definite. The scalar functionV is
differentiable, and its derivative with respect to time isV̇ = V̇x +V̇z+V̇φ, where

V̇x = (x−xr) ẋ =−(x−xr) v sinφ . (13)

V̇z = (z−zr) ż= (z−zr) v cosφ . (14)

V̇φ = (φ−φr) φ̇ = (φ−φr) ω . (15)

Now we analyze these functions in each step of the switching control scheme in
order to prove thaṫV is negative definite.

4.3.1 Controller of step 1

The robot only performs a rotation in the initial position, soV̇x = 0 andV̇z = 0.
Thus, we have to studẏV = V̇φ. We analyze the sign of this derivative function (15)
depending on the initial robot position. All the possible cases in the plane can be
divided by thez-axis: x < 0 if the robot is in the left semiplane andx > 0 if it is
in the right semiplane. The initial orientation of the robot is not constrained (up to
field-of-view constraints), therefore, in each case we need to consider the different
values of the robot orientation. Refer to Fig. 2 to follow the reasoning and (7) for
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deducing the sign of the control velocityω :

x < 0→





(φ−φr) > 0, thus (ecx < 0 and ecx > er
cx)

or (ecx > 0)⇒ (ecx−er
cx) > 0⇒ νc < 0⇒ ω < 0

(φ−φr) < 0,(thus ecx < 0 and ecx < er
cx)

⇒ (ecx−er
cx) < 0⇒ νc > 0⇒ ω > 0





⇒ V̇φ < 0 .

x > 0→





(φ−φr) > 0,(thus ecx > 0 and ecx > er
cx)

⇒ (ecx−er
cx) > 0⇒ νc < 0⇒ ω < 0

(φ−φr) < 0,thus (ecx > 0 and ecx < er
cx)

or (ecx < 0)⇒ (ecx−er
cx) < 0⇒ νc > 0⇒ ω > 0





⇒ V̇φ < 0 .

Thus, for all possible cases depending on the robot position, we obtain thatV̇φ < 0.
ThereforeV̇ < 0 and the first controller is stable in the Lyapunov sense.

4.3.2 Controller of step 2

In the second step, the robot moves towards the target while lateral and orientation
errors are corrected. The desired position is (xr , zr , φr )=(0, zr , 0). The robot moves
towards the target and the linear velocity is required to be positive in any case. It
can be seen that the velocityv given by the control law (8) is positive in any case:

v →




etx < 0→ (φ−ψ) > 0, νt > 0

etx > 0→ (φ−ψ) < 0, νt < 0



⇒ v > 0 .

Now we analyze each derivative term of the functionV̇ = V̇x +V̇z+V̇φ. In order to
check graphically the signs of the different elements ofV̇ refer to Fig. 2.

V̇x (13)→




(x−xr) = x > 0→ φ > 0

(x−xr) = x < 0→ φ < 0



⇒ As v> 0, V̇x < 0 .

The target has been defined in front of the initial robot position, in such a way that
backwards motion is not required. Then, we have(z−zr) < 0,

V̇z (14)→ (z−zr) < 0⇒ As v> 0, V̇z < 0 .
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In this step,(φ−φr) = φ and(ecx−er
cx) = ecx . The sign of the angular velocityω

given by the control is deduced from (9),

V̇φ (15)→




φ > 0, ecx > 0, etx < 0→ νc < 0, νt > 0⇒ ω < 0

φ < 0, ecx < 0, etx > 0→ νc > 0, νt < 0⇒ ω > 0



⇒ V̇φ < 0 .

Thus, we have shown in the different cases thatV̇x < 0, V̇z < 0 andV̇φ < 0; and
therefore,V̇ < 0 and the control in step 2 is stable in the Lyapunov sense.

4.3.3 Controller of step 3

After the previous step only a forward motion alongz-axis towards the target is left.
We define the Lyapunov candidate functionV = Vz+Vφ. In the third step the robot
moves with linear velocityv3 > 0 and we have thatz< 0 because the target is in
front,

V̇z (14)→ (z−zr) = z< 0⇒ As v> 0, V̇z < 0 .

Although orientation has been corrected in the previous step, the angular velocity
ω (10) is used during this step to compensate for odometry drift,

V̇φ (15)→




φ > 0→ ecx > 0→ νc < 0⇒ ω < 0

φ < 0→ ecx < 0→ νc > 0⇒ ω > 0



⇒ V̇φ < 0 .

Alternatively, we have defined a homography controller as another solution for the
last step where the epipolar geometry is not well defined (11). The homography
elements can be defined as a function of the state parameters as [12]:

v = kv(1−h33) = kv(1−cosφ+(−xsinφ+zcosφ)nz/dπ) ,

ω =−kω h13 =−kω αx(sinφ+(xcosφ+zsinφ)nz/dπ) ,

where the plane that generates the homography is defined by its normaln =(nx,ny,nz)
and the distance to the origindπ . We define again the candidate Lyapunov function
asV = Vz+Vφ,

V̇φ (15)→ x' 0, z< 0, nz < 0





φ > 0⇒ ω < 0

φ < 0⇒ ω > 0



⇒ V̇φ < 0 .

V̇z (14)→ x' 0, φ' 0, z< 0, nz < 0⇒ v > 0⇒ V̇z < 0 .
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ThusV̇ < 0, and this alternative controller is also stable in the Lyapunov sense.

In summary, we havėV < 0 for each controller of the switching control law. We
have also asymptotic stability given thatV̇ is negative definite for the controller
defined in each step.

5 Experimental Evaluation

Simulated and real experiments have been performed to demonstrate the validity
and performance of the approach. The size of both simulated and real images is
320×240pixels.

5.1 Simulation Results

The simulated data consists of a synthetic scene of random points which are gener-
ated and projected to the image plane in each iteration of the control loop. In each
iteration the epipolar geometry is computed from the point matches and the control
law is used to send the velocities(v,ω) to the virtual robot.

The simulation presented in Fig. 5 considers as start position(x,z,φ)= (−2,−10,5◦)
and as target position(0,0,0◦). This experiment has been performed adding white
noise to the image points with a standard deviation ofσ = 0.3 pixels. The evolution
of the epipoles from the fundamental matrix between the current and target posi-
tion is shown in Fig. 5(a). The computed epipoles using the auxiliary target and
the values of the epipoles used in the control are shown in Fig. 5(b) and Fig. 5(c)
respectively. It can be seen that switching from the fundamental matrix to the auxil-
iary one avoids the degenerate values of the epipoles due to the short baseline when
reaching the target.

Simulations with different values of image noise have been performed to show the
robustness of the control law. The final position errors obtained in the simulations
are shown in Fig. 5(f) using standard deviation values fromσ = 0 to 2 pixels. Re-
sults show that the control behaves properly with image noise.

The focal length of the camera (αx) can be considered as a constant gain of each
control law of the switching scheme, see (7), (8), (9) and (10). Therefore, due to the
benefits of the feedback controller, is more than enough to know a rough approxi-
mation ofαx . Simulations show that the control law can cope with high errors in
αx. In the results shown in Fig. 7(a), the focal length used in the controller is fixed
to f = 6 mm while simulations with different real focal length are carried out.

In our approach we have assumed that the principal point is in the center of the
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Fig. 5. (a-e) Simulation with white image noise ofσ = 0.3 pixels. (f) Final position error
using different values of noise.
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Fig. 6. (a-e) Simulation with homography-based control in the last phase carried out with
white image noise ofσ = 0.3 pixels. (f) Final position error using different values of noise.
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Fig. 7. Simulations with: different values of the focal length (a), differentx-coordinates of
the principal point (b) and different values of parameterd (c). In each case, first and second
row are the robot rotation and path respectively.

image. Simulations have been performed where thex-coordinate of the principal
point is fixed to zero in the controller while its real value is modified (Fig. 7b). It
can be seen that calibration error in the principal point produces a lateral error in
the final position. This is because the desired epipoles at the end of the motion are
thex-coordinate of the principal point; and therefore, an error onx0, is transferred
to the motion. However, the assumption of the principal point to be in the center of
the image is a good supposition in practise since small deviations are observed.

In the second step of the controller we use the unknown parameterd (8). It can be
considered again as a gain of the control and it is fixed to a constant value. The
typical distances in our experiments are about meters, and we have selectedd = 2
meters in our simulations and real experiments. To check the correct behaviour of
the system against the fixed value of the unknownd, we have tested with values
of d from centimeters to dozens of meters for the same initial real distance of 10
meters. The only difference obtained is a proportional variation in the time needed
for completing the experiment, reaching in all the cases the desired target position
(see Fig. 7c).

Experiments by using the homography-based control in the last step (11) are pre-
sented in Fig. 6. The homographies computed during the motion in the last phase
are less noisy than the epipoles; this can be seen comparing the rotation obtained
by both methods, (compare Fig. 5d and Fig. 6d). The evolution of the homography
elementh33 used to computev is shown in Fig. 6(c), and its value reaches1 as
desired when the robot approaches to the target. The robot trajectory is a straight
path and therefore no correction of the rotation is needed up to noise and drift,

16



Fig. 8. The experimental platforms: ActiveMedia’s PowerBot and Pioneer.

thus the elementh13 used to computeω fluctuate around its desired zero value. A
disadvantage of performing this third step using the homography is the additional
requirement of the homography computation.

5.2 Real World Experiments

We evaluated the proposed control law in two experimental platforms: a PowerBot
and a Pioneer from ActivMedia (Fig. 8). Both robots have a nonholonomic differ-
ential drive base, with two rear caster wheels for the PowerBot and with the four
driving wheels for the Pioneer. The robots are equipped with a Canon VC-C4 pan-
tilt-zoom CCD camera mounted on top of a laser scanner. The platforms are con-
trolled by sending translation and rotational velocities(v,ω) given by the switching
control law. The vision control loop has not yet been optimized and it is quite slow,
therefore, the velocities have to be quite low. The same implementation of the con-
trol was used on both platforms. The experiments have been performed in indoor
and outdoor realistic settings. It has to be mentioned that no particular knowledge
of the environment, other than the image from the desired pose, is provided. The
camera calibration parameters have been set without performing the calibration to
f = 6 mm for the focal length and the image center for the principal point.

Results from one of the experimental runs are shown in Fig. 9. The lateral distance
to the target (a) and depth distance (b) shows the robot position evolution and (c)
shows the rotation. The lateral distance to the target, which is specially critical with
nonholonomic motion constraints, is corrected in an asymptotic convergence (d).
The definition of the desired trajectories of the epipoles in each step requires the
selection of the values ofT1 andT3. The value ofT2 is defined respectT3 with a few
seconds of difference (T2 = T3− 10 s). These parameters determine the time for
the control to track the desired input trajectories. The minimum time required for
the motion is constrained by the maximum velocities of the robot and the control
loop time period. The selection of these parameters is not critical having a wide
margin. In the experiments we have defined different values for the indoor and
outdoor experiments. Outdoor experiments require higher values of these param-
eters as the distances covered are higher. The evolution of the epipoles is shown
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Fig. 9. Real experiment with target position at(0,0,0◦). Position data shown in (a-d) has
been obtained from robot odometry.

in (e) with a similar behavior with respect to the simulations. It can be seen that
the epipoles have proper values, except noise, avoiding the problem of degeneracy
due to the short baseline. The number of SIFT matches found along the motion
is shown in (f). As expected, the number of matches increases with the similar-
ity of the images as the robot moves towards the target. If the number of SIFT
points is too low, for example because a scene with poor information, the epipole
estimation accuracy decreases. If this situation keeps along several iterations the
control may fail, for example when the common scene between the current and
target image leaves the camera field of view. Fig. 10 shows the evolution of an in-
door and outdoor experiment with some of the images taken during the navigation.
The distance between initial and target position is3 m and5 m respectively in the
indoor and outdoor experiments of Fig. 10. The final error given by the odome-
try is (−0.003,−0.054,−2.81◦) and(−0.047,−0.105,−0.04◦) respectively. The
final image of each experiment, compared with the target image, allows to see the
correctness of the motion control.

In the approach presented we consider that there are no obstacles between the initial
and target positions. The control itself is not designed for detecting obstacles. If an
obstacle appears in the middle of the robot path, an additional procedure would be
needed to avoid the obstacle (for example a reactive potential field routine). After
the routine ends and the obstacle is avoided the controller takes control of the robot
again toward the target.
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Fig. 10. Sequences of some images taken by the robot camera during an indoor (2nd row)
and outdoor (4th row) experiment. Rows 1 and 3 are the corresponding images taken by an
external video camera. In each row the first is the target image, the second is the initial and
the last is the image at the end of the motion. Videos of these experiments are available in
http://webdiis.unizar.es/∼csagues/videos.html/

6 Conclusion

In this paper, we have presented a visual servoing scheme for mobile platforms
based on the epipolar geometry. The approach designed consists of a sequential
switching control law obtained from the input-output linearization of the system.
The resultant path followed by the robot is due to the specific reference trajectories
defined for both epipoles in the current and target images. The estimation of the
epipolar geometry is performed through an automatic robust feature detection and
matching process. The contributions are that the control scheme presented deals
with the motion constraints of the platform and the robot is driven in a direct motion
towards the target using as image information the epipoles. The presented approach
does not require complete camera calibration or any particular knowledge about
the environment. The stability of the switching control law in the Lyapunov sense
has been analyzed. Real experiments have been performed in realistic indoor and
outdoor settings to show the validity of the approach. The epipolar based control
is designed to avoid degeneracy due to short baseline when the robot comes closer
to the target. Additionally, an alternative solution is proposed to avoid this problem
by switching between the fundamental matrix and the homography model.
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A Geometric Relations Between the System State and the Epipoles

The derivation of the geometric relations (1) and (2) is detailed next. The goal is to
relate the epipoles (ecx,etx) with the state of the system (x,z,φ). The geometric rela-
tions can be deduced from Fig. 2 using the idea of similar triangles. The expression
for the target epipoleetx is straightforward from Fig. 2: The right-angled triangles
with sides4(x,z) and with sides4(etx,αx) are similar and then it is possible to
deduce proportionalities between corresponding sides of the two triangles:

etx

αx
=

x
z

,

which leads to (2). The same procedure is used to obtain the expression for the
current epipoleecx. In this case the similar triangles are4(ecx,αx) and4(xcosφ+
zsinφ, zcosφ−xsinφ). The sides of the similar triangles used from Fig. 2 are drawn
in bold. Then we obtain the expression that leads to (1),

ecx

αx
=

xcosφ+zsinφ
zcosφ−xsinφ

.

B Input-output Linearization of the System

The derivation of the expressions (5) and (6) obtained after the input-output lin-
earization is detailed next. We first differentiate the expressions that relate the
epipoles with the state of the system. So, for the epipole in the current image ac-
cording to (1), we have

ėcx =
decx

dt
=

d
dt

(
αx

xcosφ+zsinφ
zcosφ−xsinφ

)
.

Denotings= sinφ andc = cosφ, the result of the derivation is

ėcx = αx
(ẋ c−xφ̇s+ żs+zφ̇c)(zc−xs)− (żc−zφ̇s− ẋ s−xφ̇c)(xc+zs)

(zcosφ−x sinφ)2 .

Computing products and simplifying we have

ėcx = αx
ẋz−xż+ φ̇(x2 +z2)
(zcosφ−xsinφ)2 .
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Using (3), it follows

ėcx = αx
−vsinφz−xvcosφ+ω(x2 +z2)

(zcosφ−xsinφ)2 ,

and using (4),

ėcx = αx
−vsinφdcosψ+dsinψvcosφ+ωd2

(dcosψcosφ+dsinψsinφ)2 = αx
v(−sinφcosψ+cosφsinψ)/d+ω

(cosψcosφ+sinψsinφ)2 .

Finally using trigonometry, it turns out the expression (5),

ėcx =−αxsin(φ−ψ)
dcos2(φ−ψ)

v+
αx

cos2(φ−ψ)
ω .

Similarly for the epipole in the target image (2) we differentiate as follows

ėtx =
detx

dt
=

d
dt

(
αx

x
z

)
= αx

ẋz−xż
z2 .

Using (3) we have

ėtx = αx
−vsinφ

z
−αx

xvcosφ
z2 ,

and using (4) it follows

ėtx = αx
−vsinφ
dcosψ

+αx
dsinψvcosφ

d2cos2ψ
= αx

v
d

(−sinφcosψ+cosφsinψ
cos2ψ

)
.

Finally using trigonometry, it turns out the expression (6),

ėtx =−αxsin(φ−ψ)
dcos2ψ

v .
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[13] G. López-Nicoĺas, C. Sag̈ués, J.J. Guerrero, D. Kragic, and P. Jensfelt. Nonholonomic
epipolar visual servoing.IEEE International Conference on Robotics and Automation,
pages 2378–2384, 2006.

[14] D. Lowe. Distinctive image features from scale-invariant keypoints.International
Journal of Computer Vision, 60(2):91–110, 2004.

[15] Y. Ma, J. Kosecka, and S. Sastry. Vision guided navigation for a nonholonomic mobile
robot. IEEE Transactions on Robotics and Automation, 15(3):521–537, 1999.

22



[16] E. Malis and S. Benhimane. A unified approach to visual tracking and servoing.
Robotics and Autonomous Systems, 52:39–52, 2005.

[17] E. Malis, F. Chaumette, and S. Boudet. 2 1/2 D visual servoing.IEEE Transactions
on Robotics and Automation, 15(2):234–246, April 1999.

[18] E. Marchand and F. Chaumette. Feature tracking for visual servoing purposes.
Robotics and Autonomous Systems, 52:53–70, 2005.

[19] G.L. Mariottini, D. Prattichizzo, and G. Oriolo. Epipole-based visual servoing
for nonholonomic mobile robots.IEEE International Conference on Robotics and
Automation, pages 497–503, 2004.

[20] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In
Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pages
257–263, June 2003.

[21] P. Rives. Visual servoing based on epipolar geometry. InIEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 1, pages 602–607, 2000.

[22] C. Sag̈ués and J.J. Guerrero. Visual correction for mobile robot homing.Robotics and
Autonomous Systems, 50(1):41–49, 2005.

[23] J.J. E. Slotine and W. Li.Applied nonlinear control. Prentice Hall, Englewood Cliffs
NJ, 1991.

[24] P. H. S. Torr. Bayesian model estimation and selection for epipolar geometry and
generic manifold fitting. International Journal of Computer Vision, 50(1):35–61,
2002.

23




